
8 The Delphi Magazine Issue 55

Splat: Sound And
Graphics With Delphi
by Ray Lischner

I recently searched the web for
computer games and toys for my

infant son and was disappointed
by the tiny selection for children
that young. As a software devel-
oper, my natural response was to
write my own game, which I call
Splat (the reason for the name will
become clear next month). It turns
out that Splat touches on many
aspects of Windows and Delphi
programming, from multimedia to
internationalization. It is an exam-
ple of Delphi put to practical use.
This is the first of two articles to
explore Splat and its design.

Splat is a simple toy. It takes over
the screen, showing a black back-
ground. When you press any key or
mouse button, it displays a colored
shape and plays a sound. That’s all.
Repeat until bored. Figure 1 shows
a screenshot.

To keep things interesting, once
a shape appears it slowly grows
and moves across the screen. New
shapes are drawn on top of old
ones, and old shapes fade to black.
It’s so simple that even a child can
play it. At four months, my son has
a lot of fun pounding on the key-
board, watching the shapes and
hearing the sounds. Older children
can learn about cause and effect:
pressing the same key always pro-
duces the same sound. Children
can ‘play’ the keyboard as a musi-
cal instrument to produce their
favorite sounds.

To appeal to the parents, Splat
has an educational aspect. When
you press a letter or digit, the
sound that it makes is the name of
that letter or digit. Children can
practise their alphabet and num-
bers. Using Delphi’s multiple-
language support, you can easily
add other languages, so the child
or adult can practise French,
Spanish, German, Greek or even
Russian (provided you have the
right keyboard).

This article presents the archi-
tecture of the Splat program: how it
plays sounds and draw shapes. It
also presents a simple sound
recorder to help record the sound
files for letters and digits. The next
article will examine international
issues, add compression for the
sound files, and more refinements.

The Splat Framework
The basic framework for Splat is
simple. The main form takes over
the screen and defines handlers for
keyboard and mouse events. When
the user clicks a mouse button,
Splat plays a random sound and
adds a shape at the mouse posi-
tion. When the user presses a key,
Splat plays a sound that corre-
sponds to the key and adds a shape
at a random position.

A master list keeps track of all
shapes. To draw the screen, the
shape list draws each of the shapes
in the list. Newer shapes are drawn
on top of older shapes. A double
buffer prevents screen flicker: the
master list draws to an off-screen
bitmap and, when the bitmap is
complete, it’s drawn on the screen.

A timer redraws the screen
every 0.25 second. After drawing
all the shapes in the list, every
shape produces its next
generation. Each shape class dic-
tates what a generation change
really means, but in most cases it
means the shape’s position, size,
and color change slightly. After
each generation, any shape that
becomes invisible, by moving off
the screen or by fading entirely to
black, is removed from the list.

The form has a TImage whose
Align property is set to alClient so
that it takes over the form. Thus, all
mouse events go to the image, and
it handles the OnMouseDown events.
Splat draws a shape at the mouse
position, and plays a sound chosen
at random.

When the user presses a key,
Splat draws a shape at a random
position on the screen and plays a
sound that corresponds to that
key. Rather than using a simple
OnKeyDown handler, Splat takes spe-
cial steps to handle keystroke
events. With a child pounding on
the keyboard, you never know
what keys will be pressed.
Alt+Space by default pulls down
the system menu, for example. To
avoid surprises, Splat intercepts
all keystroke events before they
reach any control. Thus, Alt+F4
does not close the main form and
the application. To intercept all
keystroke messages, Splat uses a
TApplicationEvents component
and sets an OnMessage event han-
dler. For all keystroke events
(Wm_KeyDown, Wm_SysKeyDown, etc),
Splat sets Handled to True and
returns immediately. To exit the
program, the user must press
Escape. Listing 1 shows the mouse
and keyboard event handlers.

Playing Sound Resources
All the sounds are originally stored
in .WAV files, which are linked as
WAVE resources. Not many Delphi
users know that you can include a
resource script (.RC file) as part of
a project, and Delphi 5 will auto-
matically compile the script into a
.RES file when you build an
application. To take advantage of
this feature, just add the .RC file to
the project. View the project
source to see the new $R compiler
directive.

The format of an .RC file is flexi-
ble. Splat uses the simplest form:
each line describes a resource as a
resource identifier, a resource
type (WAVE) and a file name that
contains the resource data. A

➤ Figure 1

10 The Delphi Magazine Issue 55

➤ Listing 1

quick search on the web turns up a
number of sources of free .WAV
files. Most of them seem to be ille-
gal copies of copyrighted material,
but two websites offer free sample
downloads of commercial sound
effect products. You can download
the files from:

www.novadevcorp.com/products/
kaboomwin/index.html

www.softseek.com/Home_Family_
and_Leisure/Music/
Sound_File_Collections/
Review_6120_index.html

The other sound files in Splat were
made with the Recorder utility,
which I will describe later in this
article. Listing 2 shows excerpts
from the SoundRes.rc script.

Windows resource names and
types can be strings or numbers.
To distinguish between string
names and numeric identifiers,
Windows plays a dirty trick. It
always uses a PChar for a resource
identifier and, if the high word is
zero, the low word is the numeric
identifier. Otherwise, the entire

pointer is a plain zero-terminated
string. In a Delphi program, it is
much easier to work with strings
exclusively, but there is no reason
to restrict the programmer from
using numeric resource identifiers.
Two functions hide the details by
mapping strings to numbers as
needed. The string form of a
numeric resource identifier is a
hexadecimal number, eg $001A,
making it easy to convert the string
back to a number. Listing 3 shows
the functions to convert between
strings and resource identifiers.

In order to find the sound that
corresponds to the key that the
user presses, Splat looks up a
sound resource whose name is the
same as the key’s name. For exam-
ple, the letter A has the textual rep-
resentation of A. Digits have the
name DIGIT0 or NUMPAD0 depending
on whether the key pressed is one
of the the digits above the letters
or on the numeric keypad. Special
keys have representative names,
such as F1 or PgUp. The KeyCodeTo-
Text function takes a virtual key
code and returns a string repre-
sentation of the key. As you will
learn later in this article, you don’t
usually need to know the actual
names that Splat uses because a
companion program creates the
.WAV files for you, using file names
that match the corresponding
resource names. Listing 4 shows
the KeyCodeToText function.

The PlayWave function plays the
named WAVE resource by calling
PlaySound (in the MMSystem unit).
Windows offers many different
ways to play a sound resource, but
PlaySound is the simplest: it can
play a .WAV file, a WAVE resource,
any of the system sound effects, or
a waveform in memory. You can
choose to wait until the sound fin-
ishes playing before continuing, or
let the program continue running
while the sound plays. Almost

// Create new shape at (X,Y) or generate random position
procedure TMainForm.CreateShape(X, Y: Integer);
begin
if X < 0 then
X := Random(Width);

if Y < 0 then
Y := Random(Height);

ShapeList.AddShape(X, Y);
RedrawShapes;

end;
// Intercept all keystroke events and play a WAVE file for
// each key press without interpreting the key event.
procedure TMainForm.AppEventsMessage(var Msg: tagMSG; var Handled: Boolean);
begin
case Msg.Message of
Wm_KeyDown, Wm_SysKeyDown:
begin
// Handle key down events by playing a sound and drawing a shape.
HandleKeyDown(Msg.wParam);
Handled := True;

end;
Wm_DeadChar, Wm_Char, Wm_KeyUp, Wm_SysKeyUp:
Handled := True; // Ignore up and other key events

else
{Skip};

end;
end;
// Pick a WAVE file to play based on the key that the user pressed.
procedure TMainForm.HandleKeyDown(KeyCode: Word);
begin
if KeyCode = Vk_Escape then
Close

else begin
PlayWave(KeyCodeToText(KeyCode));
CreateShape;

end;
end;
// When the TImage gets a mouse down event, generate a new
// shape at the mouse position, and play a random sound.
procedure TMainForm.ImageMouseDown(Sender: TObject; Button:
TMouseButton; Shift: TShiftState; X, Y: Integer);

begin
CreateShape(X, Y);
PlayRandomWave;

end;

A WAVE "Sounds\A.WAV"
...
Z WAVE "Sounds\Z.WAV"
...
DIGIT0 WAVE "Sounds\0.WAV"
...
DIGIT9 WAVE "Sounds\9.WAV"

// Return a string for a resource name or identifier. A resource name can be a
// string or a numeric identifier. Convert a numeric identifier to a string as a
// hexadecimal constant (e.g., $12A). The dollar sign makes it easy to convert
// back to a number and to distinguish a numeric ID from a string name.
function ResIDToString(ResName: PChar): string;
begin
if LongRec(ResName).Hi = 0 then
Result := Format('$%x', [Integer(ResName)])

else
Result := ResName;

end;
// Convert a string back to a resource identifier.
function StringToResID(const ResText: string): PChar;
var ID: Word;
begin
if (ResText = '') or (ResText[1] <> '$') then
Result := PChar(ResText)

else begin
ID := StrToInt(ResText); // Make sure the ID is within the proper bounds.
Result := PChar(ID);

end;
end;

➤ Listing 2

➤ Listing 3

12 The Delphi Magazine Issue 55

every sound card can easily play a
sound while a program runs, so
Splat opts to continue. Use the
Snd_Async flag to play the sound
asynchronously, and the Snd_Res-
ource flag to load the WAVE resource.

If the user presses a key before
the sound finishes playing, the
next call to PlaySound stops the old
sound and starts the new one. The
details of calling PlaySound are
encapsulated in the PlayWave func-
tion so future enhancements can
be localized to the PlayWave proce-
dure without affecting the rest of
the application. If Splat cannot find
a sound for the key, PlaySound
plays a default sound, and if Play-
Sound returns an error, Splat tries
one last time by calling Delphi’s
Beep procedure. Listing 5 shows
the PlayWave function.

When the user clicks a mouse
button, Splat chooses a sound at
random. To do that, it must have a
list of all the WAVE resources in the
file. The form’s OnCreate event han-
dler fills a TStringList with the
names of all the WAVE resources.
(Here is an example of the utility of
having all the resource identifiers
as strings. They can all be added to
the string list without further ado,
which would be much harder to
manage if Splat used the Windows
trick of mixing numbers and PChar
pointers.) As with any Windows
callback function, EnumWaves must
use the stdcall calling convention.

Windows passes an arbitrary
pointer parameter, so EnumWaves
uses a TStrings parameter, the list
of wave resources. To play a
random sound, PlayRandomWave
picks a resource name at random.

Drawing Shapes
When the user presses a key or
mouse button, Splat displays a
random shape. Splat can display
several different kinds of shapes.
Each shape is an instance of a
shape class that derives from
TShape (not the TShape in the VCL,
but a new TShape that is part of the
Splat program, there are only so
many names to go around). The
main application never deals with
the individual shape classes,
though. It creates a TShapeList
object and the shape list takes care

of the details of creating and man-
aging shapes. This insulates the
application from changes to the
implementation of the shapes. The
framework lets you add new
shapes easily and alter the behav-
ior of the shapes, without changing
any code in the main application. A
registration procedure lets you
add new shapes without modifying
the main Shapes.pas source file.
Just add a new unit to the project
and call RegisterShapes.

Listing 6 shows the TShapeList
class declaration. The shape list
needs to know the screen size so it
can tell when shapes leave the
screen and are no longer visible.
Rather than hardcoding a direct
reference to the Screen object,
TShapeList gets its bounds from
the main application. Flexibility is
always a handy asset, as you’ll see
later. The AddHelp method adds a
special shape, THelp, which dis-
plays the message ‘Press ESC to exit
the program’. The application can
call AddHelp anytime to help users
who may not know how to quit.

Each shape class inherits from
TShape. Many of the methods of
TShape are protected and virtual,
so derived classes can customize
the behavior. The default behavior
is that a shape starts small and
grows with each generation. When
the shape is created, it starts with
a small, random, velocity in the
form of a TPoint. The point is
added to the shape’s position for
each generation.

The initial color for most shapes
is also random. To keep the color
bright and interesting, a random

// Play the named WAVE resource. The resource might be located in
// the locale-specific DLL or in the main application. Try the DLL
// first, then the application. If all else fails, use a default beep.
procedure TMainForm.PlayWave(const Name: string);
var ResName: PChar;
begin
ResName := StringToResID(Name);
if not PlaySound(ResName, hInstance, Snd_Resource or Snd_ASync) then
Beep;

end;

// Return a text representation for a virtual key code.
function KeyCodeToText(KeyCode: Word): string;
begin
case KeyCode of
Ord('0')..Ord('9'):
Result := 'Digit' + Chr(KeyCode);

Ord('A')..Ord('Z'):
Result := Chr(KeyCode);

Vk_NumPad0..Vk_NumPad9:
Result := 'NumPad' + Chr(Ord('0') + KeyCode - Vk_NumPad0);

else
Result := ShortCutToText(KeyCode);
// If name not a valid resource name, use plain hexadecimal representation
if (Result = '') or (Pos(' ', Result) > 0) or not (Result[1] in
['a'..'z','A'..'Z']) then
Result := Format('Char%.2X', [KeyCode]);

end;
end;

➤ Above: Listing 4 ➤ Below: Listing 5

TShapeList
TShapeList inherits from TObjectList, which seems to be poor program-
ming style. Good style dictates that the object list should be a private field of
TShapeList, so the shape list can delegate work to the object list without
exposing the list contents to the outside world. This exposure is potentially
unsafe, because the application could add non-shape objects to the list,
which would be very, very bad. In a simple application such as Splat, the lack
of safety is outweighed by the simplicity of inheritance. As the application
grows more complex, you should consider changing the implementation of
TShapeList. The new class would hide the TObjectList as a private field and
implement simple methods, such as GetCount, by getting the object list’s
Count property. The shape list’s Add method would take a TShape object as a
parameter, to help ensure the validity of the list’s contents. If you are careful,
you should be able to change the implementation without affecting its
public interface or the way the application uses the shape list. That’s the
power of object-oriented programming.

March 2000 The Delphi Magazine 13

hue is chosen in a hue, saturation
and value color space instead of
choosing random red, green and
blue values, which would result in
lots of boring colors. Colors fade to
black over successive generations,
so new shapes are easier to see
than older shapes.

To tell when a shape has moved
off the screen, each shape also
keeps track of its bounding box
(the smallest rectangle that con-
tains the entire shape). For simplic-
ity, some shapes do not compute
the smallest bounding box, but use
a small-enough rectangle that is
easier to determine. The extra size
means a few shapes live longer
than necessary, but they do not
cause any problems.

Finally, every shape must be able
to draw itself on a canvas. TShape
declares the Draw method as an
abstract virtual method, so
derived classes must override it.
Listing 7 shows the declaration for
the TShape base class.

The simplest shape is the ellipse.
It uses the TCanvas.Ellipsemethod
to draw itself, after setting the
brush and pen colors to the
shape’s desired color. All other
behavior it inherits from TShape.
Listing 8 shows the TEllipseclass.

The TPolygon class implements a
simple polygon, which can have
between 3 and 12 vertices. Any
more than 12 vertices and the poly-
gon looks more like an ellipse. The
number of vertices is chosen ran-
domly when the polygon object is

created. The TPolygon class is also
quite simple, as you can see in List-
ing 9. Other shapes are just as easy
to define. A four-sided TPolygon is
drawn as a diamond, so a separate
TRectangle class implements a
basic rectangle. See the compan-
ion disk for the complete source of
TRectangle and other shapes.

Displaying The Shapes
Splat starts by taking over the
entire screen and displaying a
black background. The shape list is
initialized with the help message.
To make the form cover the entire
screen, the BorderStyle property is
set to bsNone, and the form’s
OnCreate handler sets the form size
to fill the screen (Screen.Width by
Screen.Height), which makes sure
the form covers the task bar. The
handler also calls the Windows API
function SetWindowPos, with Hwnd_
TopMost as the insert-after parame-
ter. This forces Splat’s window to
be shown on top of all other win-
dows. Unfortunately, Windows
does not strictly enforce the top-
most attribute (in part because
other windows vie for that status).

Splat must play a number of tricks
to remain on top in all situations.

The simplest way for Splat to
stay on top of things, so to speak, is
to call SetWindowPos when any
other window becomes active. Set
the application’s OnDeactivate
event handler. (The form’s OnDe-
activate handler is called when
another form in the same applica-
tion becomes active. You must set
the application’s OnDeactivatehan-
dler to learn when another applica-
tion becomes active.) Splat
already has a TApplicationEvents
component for intercepting key-
stroke events. Just add an OnDe-
activate handler (Listing 10).

You run into a problem on
Windows 98 and Windows 2000
(the operating system formerly
known as NT 5). These operating
systems have a feature that is usu-
ally friendly, but in this case gets in
the way. The problem is that one
thread cannot steal the keyboard
focus from another thread. In
normal working conditions, this
is an excellent feature, which

type
// Abstract base class for all shapes. Maintain position
// of shape's center, size, and color. Each generation,
// fade color and move shape. When color becomes black, or
// when shape moves off screen, the list deletes it.
TShape = class
private
fColor: TColor; // Color of shape
fDelta: TPoint; // Position change for each generation
fPosition: TPoint; // Center of shape
fSize: TSize;

protected
constructor Create(Position: TPoint); virtual;
// Randomly change the shape's color. The default is to
// fade towards black.
procedure ChangeColor; virtual;
// Draw this shape on the canvas, at the current
// position, using the current color. Derived classes
// must override this method.
procedure Draw(Canvas: TCanvas); virtual; abstract;
// Randomly change the size of the shape.
procedure ChangeSize; virtual;
// Generate a random position Delta, can be +ve or -ve
procedure GenerateDelta; virtual;
// Get the shape's bounding box.
procedure BoundingBox(var Rect: TRect); virtual;
function GetBottom: Integer; virtual;
function GetLeft: Integer; virtual;

function GetRight: Integer; virtual;
function GetTop: Integer; virtual;
// Return True if the color is not black and if the
// shape's bounding box is still visible on the screen.
function IsVisible(Width, Height: NaturalInt): Boolean;
virtual;

// Move the shape's position by its delta.
procedure Move; virtual;
// Generate the next generation by fading the color.
procedure NextGeneration(Width, Height: NaturalInt);
virtual;

public
property Color: TColor read fColor write fColor;
property Delta: TPoint read fDelta write fDelta;
property Position: TPoint read fPosition
write fPosition;

property XPosition: Integer read fPosition.X
write fPosition.X;

property YPosition: Integer read fPosition.Y
write fPosition.Y;

property Size: TSize read fSize write fSize;
property XSize: Integer read fSize.CX write fSize.CX;
property YSize: Integer read fSize.CY write fSize.CY;
property Left: Integer read GetLeft;
property Right: Integer read GetRight;
property Top: Integer read GetTop;
property Bottom: Integer read GetBottom;

end;

➤ Listing 7

type
TShapeList = class(TObjectList)
private
fHeight, fWidth: NaturalInt; // screen size
function GetShape(Index: NaturalInt): TShape;

public
class function AnyShapeClass: TShapeClass;
constructor Create(Width: NaturalInt = 0; Height: NaturalInt = 0);
procedure AddShape(X, Y: NaturalInt); // Create random shape and add to list
procedure AddHelp; // Add Help text to center of screen
procedure Draw(Canvas: TCanvas); // Draw all shapes on canvas
procedure NextGeneration; // Iterate next generation of shapes
// Get the shapes in the list
property Shapes[Index: NaturalInt]: TShape read GetShape; default;
property Height: NaturalInt read fHeight;
property Width: NaturalInt read fWidth;

end;

➤ Listing 6

14 The Delphi Magazine Issue 55

prevents one program from pop-
ping up a window and stealing the
keystrokes that you are furiously
typing into a word processor.
Splat, however, is special and
needs to keep the keyboard focus
no matter what else is going on.
The solution is to attach Splat’s
main thread to the keyboard input
of whatever thread happens to
have the keyboard input. Then
Windows will let Splat become the
foreground window, and it can
detach the keyboard input from
the other thread. Listing 11 shows
the ForceForegroundWindow func-
tion that accomplishes this magic
(thanks to Karl E Peterson, who
posted this workaround to www.
mvps.org/vb/samples.htm).

Activation and keyboard focus
are two distinct notions in Win-
dows. Another program can gain
the keyboard focus without deacti-
vating Splat. This happens, for
example, when the user presses

the Windows key to bring up the
Start menu. Splat can retain its
active status, but still lose the key-
board focus on Windows 98. There
is no simple way for Splat to pre-
vent the Start menu from appear-
ing, so instead, it calls ForceFore-
groundWindow each time it redraws
its shapes. Even if Windows tries to
display the Start menu, Splat
seizes control and keeps splatting.

Very quickly, you run into
another problem. How do you
debug an application that forces its
window to be on top of all other
windows, including Delphi’s IDE? A
simple solution is to call IsDebug-
gerPresent, and if the application is
running under control of a
debugger, do not call SetWindowPos.
The only hitch is that Windows 95
does not have IsDebuggerPresent,
but that isn’t a major problem.
Delphi has the DebugHook variable,
which is non-zero when the app
is running in Delphi’s integrated

debugger. Splat, therefore, imple-
ments its own IsDebuggerPresent
function, which simply returns
True when DebugHook is not zero.

When running in the debugger,
Splat does not cover the screen, so
you can see the form and the
source code at the same time.
That’s why it’s helpful that TShape-
List keeps track of the size where
it is running. Sometimes that’s the
screen size and sometimes it isn’t.
The shape list could have kept a
reference to the form and used the
form’s size, but there is no other
reason for the shape list to know
anything about the form. It’s sim-
pler for the shape list to keep track
only of the form’s size.

The form has a TTimer compo-
nent to create successive genera-
tions of shapes. When the OnTimer
event fires, the event handler first
makes sure the application is still
the topmost, foreground window
(but only if it is not running in the
debugger). Next the event handler
calls the shape list’s NextGene-
ration method. Finally Redraw-
Shapes clears the double-buffer
bitmap, draws all the shapes on
the bitmap, and displays the
bitmap on the TImage. Listing 12
shows these methods and event
handlers.

To initialize the application,
Splat’s OnCreate handler must
fetch the list of WAVE resources and
create the double-buffer bitmap.
To ensure the shapes and sounds
are different every time the pro-
gram runs, it also calls Randomize to
seed the pseudo-random number
generator. When running in the
debugger, though, it does not call
Randomize, so you always get a
repeatable pattern of sounds and
shapes during development.

Recording New Sounds
Now that the basic Splat program
runs, it’s time to improve the
sound effects. As you saw in List-
ing 5, any key that does not have a
matching WAVE resource plays a
default beep. The goal is to have a
different sound for every key. For
the educational part of the pro-
gram, the sounds for letters and
digits should be a person saying
that letter or digit. You can use any

type
// Regular polygon with 3-12 vertices, starts small, grows with each generation
TPoints = array of TPoint;
TPolygon = class(TShape)
private
fNumVertices: PositiveInt;

public
constructor Create(Position: TPoint); override;
procedure Draw(Canvas: TCanvas); override;
property NumVertices: PositiveInt read fNumVertices;

end;
const
MinVertices = 3;
MaxVertices = 12;

// Bounding box not always smallest bounding box, but an adequate approximation
constructor TPolygon.Create(Position: TPoint);
begin
inherited;
fNumVertices := Random(MaxVertices - MinVertices + 1) + MinVertices;

end;
procedure TPolygon.Draw(Canvas: TCanvas);
var
I: Integer;
Pt: TPoint;
Points: array of TPoint;
Angle: Single;

begin
SetLength(Points, NumVertices);
for I := Low(Points) to High(Points) do begin
Angle := 2*Pi * I / Length(Points);
Pt.X := Round(Position.X + XSize * Cos(Angle));
Pt.Y := Round(Position.Y + YSize * Sin(Angle));
Points[I] := Pt;

end;
Canvas.Pen.Color := Color;
Canvas.Brush.Color := Color;
Canvas.Polygon(Points);

end;

➤ Above: Listing 8 ➤ Below: Listing 9

type
TEllipse = class(TShape)
public
procedure Draw(Canvas: TCanvas); override;

end;
procedure TEllipse.Draw(Canvas: TCanvas);
begin
Canvas.Brush.Color := Color;
Canvas.Pen.Color := Color;
Canvas.Ellipse(Position.X - XSize div 2, Position.Y - YSize,
Position.X + XSize, Position.Y + YSize);

end;

16 The Delphi Magazine Issue 55

// If another application tries to take control, bring attention back here.
procedure TMainForm.AppEventsDeactivate(Sender: TObject);
begin
if not IsDebuggerPresent then
Win32Check(SetWindowPos(Handle, Hwnd_Top, 0, 0, 0, 0,
Swp_NoSize or Swp_NoMove));

end;

WAVE capture tool to record the
sounds, but that’s inconvenient
when you want to record 36 short
sound files. It’s easier and more fun
to write a custom sound recorder.

Windows has several ways to
record .WAV files. You can use
low-level wave audio functions, but
it’s easier to use the media control
interface (MCI). MCI provides a
small number of powerful func-
tions for recording and playing
back various multimedia formats,
including sounds (waveaudio in
MCI terms). The MCI functions
(like PlaySound) are part of
Windows’ multimedia system,
declared in the MMSystem unit.

The recorder waits for the user
to press a key. The OnKeyDown event
starts recording a waveform for
that key. When you release the key,
recording stops and the waveform
is saved to a .WAV file. You can
quickly record sounds for all the
letters and digits. The recorder
calls the same KeyCodeToText func-
tion shown in Listing 4 when it cre-
ates file names, so you know that
the file names match the resource
names that Splat expects.

The easiest way to use MCI is to
call mciSendString, which takes a
string parameter containing a com-
mand and arguments. For example,
to open a new WAV file, use open
new type waveaudio (ie, open a new
MCI stream of type waveaudio).

The record command starts
recording. You can work with mul-
tiple devices at once, so MCI
requires a device with each com-
mand. The easiest way to identify a
device is to supply an alias when

you open it. Use the alias to identify
the open device in subsequent
commands. To create an alias, use
the alias keyword at the end of the
open command string (for example:
open new type waveaudio alias
keywave). After the alias keyword,
list the alias name you want to use.
You can then use that alias name in
record, close, and other com-
mands (eg, record keywave).

To remind the user what is being
recorded, the recorder’s main
window has a status bar displaying
the key name and the current mode
(eg Recording). Listing 13 shows
the key down/up event handlers,
which start and stop recording.

The user can press multiple keys
at once. In that case, the first key
pressed is the one being recorded.
The user can press and release any
other keys, but recording contin-
ues until the first key is released.
After recording stops, the user can
press and record another key.

The rest of the recorder pro-
gram manages the display of the
WAV files in the current directory.
The user can choose a detail view
to see the size and modification
date of each file. In the detail view,
the user can sort by name, size, or
date. See the source code on the
companion disk for the complete
details. Figure 2 shows the
recorder in action.

After you have recorded your
.WAV files, edit the SoundRes.rc
file to include the new sound
resources.

What’s Next?
Now Splat is ready to use. You
have sounds and shapes. The pro-
gram takes over the screen and
lets you play. We have yet to

function ForceForegroundWindow(Handle: HWND): Boolean;
var
Foreground: HWND;
ForegroundThreadID, ThisThreadID: DWORD;

begin
Foreground := GetForegroundWindow;
if Foreground = Handle then
Result := True

else begin
ForegroundThreadID := GetWindowThreadProcessId(Foreground, nil);
ThisThreadID := GetWindowThreadProcessId(Handle, nil);
AttachThreadInput(ThisThreadID, ForegroundThreadID, True);
SetForegroundWindow(Handle);
AttachThreadInput(ThisThreadID, ForegroundThreadID, False);
Result := GetForegroundWindow = Handle; // Return True if trick worked

end;
end;

// Periodically transform all the shapes into the next generation
// and redraw the shapes. Typically shapes grow and fade color.
procedure TMainForm.TimerTimer(Sender: TObject);
begin
if not IsDebuggerPresent then begin
ForceForegroundWindow(Handle);
if Handle <> GetTopWindow(0) then
SetWindowPos(Handle, Hwnd_Top, 0, 0, 0, 0, Swp_NoSize or Swp_NoMove);

end;
ShapeList.NextGeneration;
RedrawShapes;

end;
// Draw all the shapes to a background bitmap, and replace the image's bitmap
// with the other bitmap. This use of a double buffer minimizes screen flicker.
procedure TMainForm.RedrawShapes;
begin
DoubleBuffer.Canvas.Brush.Color := clBlack; // Clear bitmap
DoubleBuffer.Canvas.FillRect(Image.BoundsRect);
ShapeList.Draw(DoubleBuffer.Canvas); // Draw the shapes
Image.Picture.Bitmap := DoubleBuffer; // Display new bitmap

end;

➤ Above: Listing 10 ➤ Below: Listing 11

➤ Listing 12

➤ Figure 2

March 2000 The Delphi Magazine 17

explore the full potential of Splat,
though. For example, Delphi makes
it easy to add language- specific
resources to a project. Take advan-
tage of this feature to substitute
different languages when Splat
plays letter and digit sounds. All
the sound resources make the
Splat.exe file rather large. The ZLIB
compression unit that comes with
Delphi lets you easily compress all
the WAVE resources and shrink the
executable to less than two-thirds
of its original size. Splat needs
other refinements, too. Press Win-
dows+M, for example, to see one situ-
ation where Splat misbehaves.

These and other features will be
the subject of next month’s article.

Ray Lischner is the author of
Delphi In A Nutshell and a number
of other books and articles about
Delphi (and Shakespeare). He also
teaches computer science at
Oregon State University. You can
email Ray at delphi@tempest-sw.
com

// Start recording a wave file for key the user has pressed.
// Record only first key pressed until user releases key.
procedure TForm1.FormKeyDown(Sender: TObject; var Key: Word; Shift: TShiftState);
resourcestring
sCannotOpen = 'Cannot open WAV recorder:'#13#10;
sCannotRecord = 'Cannot record WAV file:'#13#10;

begin
if RecordKey = 0 then begin
// Not already recording a sound, so start recording.
MciCheck(mciSendString('open new type waveaudio alias wave',
nil, 0, 0), sCannotOpen);

MciCheck(mciSendString('record wave', nil, 0, 0), sCannotRecord);
// Remember which key is being recorded, and update the status bar.
RecordKey := Key;
SetMode(sRecording);
SetStatusInfo(KeyCodeToDisplay(Key));

end;
end;
// Stop recording when user releases key. Make sure user is releasing key that is
// being recorded (in case user presses multiple keys).
procedure TForm1.FormKeyUp(Sender: TObject; var Key: Word; Shift: TShiftState);
resourcestring
sCannotStop = 'Cannot stop recording WAV file:'#13#10;
sCannotSave = 'Cannot save WAV file (%s):'#13#10;
sCannotClose = 'Cannot close WAV recorder:'#13#10;

var
FileName: string;
Item: TListItem;

begin
if Key = RecordKey then begin
MciCheck(mciSendString('stop wave', nil, 0, 0), sCannotStop);
// Save the waveform to a file.
FileName := KeyCodeToText(RecordKey) + '.wav';
MciCheck(mciSendString(PChar('save wave ' + FileName),

nil, 0, 0), Format(sCannotSave, [FileName]));
MciCheck(mciSendString('close wave', nil, 0, 0), sCannotClose);
RecordKey := 0;
SetMode('');
SetStatusInfo(Format(sRecorded, [FileName]));
// If the file is not already in the list, add it.
Item := WaveList.FindCaption(0, FileName, False, True, True);
if Item = nil then
Item := AddWaveFile(FileName);

Item.Selected := True;
end;

end;

➤ Listing 13

	The Splat Framework
	Playing Sound Resources
	Drawing Shapes
	TShapeList
	Displaying The Shapes
	Recording New Sounds
	What’s Next?

